Daisee: Adaptive importance sampling by balancing exploration and exploitation
Xiaoyu Lu,
Tom Rainforth and
Yee Whye Teh
Scandinavian Journal of Statistics, 2023, vol. 50, issue 3, 1298-1324
Abstract:
We study adaptive importance sampling (AIS) as an online learning problem and argue for the importance of the trade‐off between exploration and exploitation in this adaptation. Borrowing ideas from the online learning literature, we propose Daisee, a partition‐based AIS algorithm. We further introduce a notion of regret for AIS and show that Daisee has 𝒪(T(logT)34) cumulative pseudo‐regret, where T$$ T $$ is the number of iterations. We then extend Daisee to adaptively learn a hierarchical partitioning of the sample space for more efficient sampling and confirm the performance of both algorithms empirically.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12637
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:50:y:2023:i:3:p:1298-1324
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().