Asymptotic properties of the maximum smoothed partial likelihood estimator in the change‐plane Cox model
Shota Takeishi
Scandinavian Journal of Statistics, 2023, vol. 50, issue 3, 1503-1531
Abstract:
The change‐plane Cox model is a popular tool for the subgroup analysis of survival data. Despite the rich literature on this model, there has been limited investigation into the asymptotic properties of the estimators of the finite‐dimensional parameter. Particularly, the convergence rate, not to mention the asymptotic distribution, has not been fully characterized for the general model where classification is based on multiple covariates. To bridge this theoretical gap, this study proposes a maximum smoothed partial likelihood estimator and establishes the following asymptotic properties. First, it shows that the convergence rate for the classification parameter can be arbitrarily close to n−1$$ {n}^{-1} $$ up to a logarithmic factor under a certain condition on covariates and the choice of tuning parameter. Given this convergence rate result, it also establishes the asymptotic normality for the regression parameter.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12642
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:50:y:2023:i:3:p:1503-1531
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().