EconPapers    
Economics at your fingertips  
 

Targeted estimation of state occupation probabilities for the non‐Markov illness‐death model

Anders Munch, Marie Skov Breum, Torben Martinussen and Thomas A. Gerds

Scandinavian Journal of Statistics, 2023, vol. 50, issue 3, 1532-1551

Abstract: We use semi‐parametric efficiency theory to derive a class of estimators for the state occupation probabilities of the continuous‐time irreversible illness‐death model. We consider both the setting with and without additional baseline information available, where we impose no specific functional form on the intensity functions of the model. We show that any estimator in the class is asymptotically linear under suitable assumptions about the estimators of the intensity functions. In particular, the assumptions are weak enough to allow the use of data‐adaptive methods, which is important for making the identifying assumption of coarsening at random plausible in realistic settings. We suggest a flexible method for estimating the transition intensity functions of the illness‐death model based on penalized Poisson regression. We apply this method to estimate the nuisance parameters of an illness‐death model in a simulation study and a real‐world application.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/sjos.12644

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:50:y:2023:i:3:p:1532-1551

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898

Access Statistics for this article

Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist

More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:scjsta:v:50:y:2023:i:3:p:1532-1551