Robust inference for high‐dimensional single index models
Dongxiao Han,
Miao Han,
Jian Huang and
Yuanyuan Lin
Scandinavian Journal of Statistics, 2023, vol. 50, issue 4, 1590-1615
Abstract:
We propose a robust inference method for high‐dimensional single index models with an unknown link function and elliptically symmetrically distributed covariates, focusing on signal recovery and inference. The proposed method is built on the Huber loss and the estimation of the unknown link function is avoided. The ℓ1$$ {\ell}_1 $$ and ℓ2$$ {\ell}_2 $$ consistency of a Lasso estimator up to a multiplicative scalar is established. When the covariance matrix of the predictors satisfies the irrepresentable condition, our method is shown to recover the signed support of the true parameter under mild conditions. Based on a debiased Lasso estimator, we study component‐wise and group inference for the high‐dimensional index parameter. The finite‐sample performance of our method is evaluated through extensive simulation studies. An application to a riboflavin production dataset is provided to illustrate the proposed method.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12638
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:50:y:2023:i:4:p:1590-1615
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().