EconPapers    
Economics at your fingertips  
 

Estimation of the adjusted standard‐deviatile for extreme risks

Haoyu Chen, Tiantian Mao and Fan Yang

Scandinavian Journal of Statistics, 2024, vol. 51, issue 2, 643-671

Abstract: In this paper, we modify the Bayes risk for the expectile, the so‐called variantile risk measure, to better capture extreme risks. The modified risk measure is called the adjusted standard‐deviatile. First, we derive the asymptotic expansions of the adjusted standard‐deviatile. Next, based on the first‐order asymptotic expansion, we propose two efficient estimation methods for the adjusted standard‐deviatile at intermediate and extreme levels. By using techniques from extreme value theory, the asymptotic normality is proved for both estimators for independent and identically distributed observations and for β‐mixing time series, respectively. Simulations and real data applications are conducted to examine the performance of the proposed estimators.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/sjos.12693

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:51:y:2024:i:2:p:643-671

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898

Access Statistics for this article

Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist

More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-04-17
Handle: RePEc:bla:scjsta:v:51:y:2024:i:2:p:643-671