Accurate bias estimation with applications to focused model selection
Ingrid Dæhlen,
Nils Lid Hjort and
Ingrid Hobæk Haff
Scandinavian Journal of Statistics, 2024, vol. 51, issue 2, 724-759
Abstract:
We derive approximations to the bias and squared bias with errors of order o(1/n) where n is the sample size. Our results hold for a large class of estimators, including quantiles, transformations of unbiased estimators, maximum likelihood estimators in (possibly) incorrectly specified models, and functions thereof. Furthermore, we use the approximations to derive estimators of the mean squared error (MSE) which are correct to order o(1/n). Since the variance of many estimators is of order O(1/n), this level of precision is needed for the MSE estimator to properly take the variance into account. We also formulate a new focused information criterion (FIC) for model selection based on the estimators of the squared bias. Lastly, we illustrate the methods on data containing the number of battle deaths in all major inter‐state wars between 1823 and the present day. The application illustrates the potentially large impact of using a less‐accurate estimator of the squared bias.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12696
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:51:y:2024:i:2:p:724-759
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().