Modeling multivariate extreme value distributions via Markov trees
Shuang Hu,
Zuoxiang Peng and
Johan Segers
Scandinavian Journal of Statistics, 2024, vol. 51, issue 2, 760-800
Abstract:
Multivariate extreme value distributions are a common choice for modeling multivariate extremes. In high dimensions, however, the construction of flexible and parsimonious models is challenging. We propose to combine bivariate max‐stable distributions into a Markov random field with respect to a tree. Although in general not max‐stable itself, this Markov tree is attracted by a multivariate max‐stable distribution. The latter serves as a tree‐based approximation to an unknown max‐stable distribution with the given bivariate distributions as margins. Given data, we learn an appropriate tree structure by Prim's algorithm with estimated pairwise upper tail dependence coefficients as edge weights. The distributions of pairs of connected variables can be fitted in various ways. The resulting tree‐structured max‐stable distribution allows for inference on rare event probabilities, as illustrated on river discharge data from the upper Danube basin.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12698
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:51:y:2024:i:2:p:760-800
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().