The effect of the working correlation on fitting models to longitudinal data
Samuel Muller,
Suojin Wang and
A. H. Welsh
Scandinavian Journal of Statistics, 2024, vol. 51, issue 2, 891-912
Abstract:
We present a detailed discussion of the theoretical properties of quadratic inference function estimators of the parameters in marginal linear regression models. We consider the effect of the choice of working correlation on fundamental questions including the existence of quadratic inference function estimators, their relationship with generalized estimating equations estimators, and the robustness and asymptotic relative efficiency of quadratic inference function and generalized estimating equations estimators. We show that the quadratic inference function estimators do not always exist and propose a way to handle this. We then show that they have unbounded influence functions and can be more or less asymptotically efficient than generalized estimating equations estimators. We also present empirical evidence to demonstrate these results. We conclude that the choice of working correlation can have surprisingly large effects.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12704
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:51:y:2024:i:2:p:891-912
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().