Semiparametric efficient estimation in high‐dimensional partial linear regression models
Xinyu Fu,
Mian Huang and
Weixin Yao
Scandinavian Journal of Statistics, 2024, vol. 51, issue 3, 1259-1287
Abstract:
We introduce a novel semiparametric efficient estimation procedure for high‐dimensional partial linear regression models to overcome the challenge of efficiency loss of the traditional least‐squares based estimation procedure under unknown error distributions, while enjoying several appealing theoretical properties. The new estimation procedure provides a sparse estimator for the parametric component and achieves the semiparametric efficiency as the oracle maximum likelihood estimator as if the error distribution was known. By employing the penalized estimation and the semiparametric efficiency theory for ultra‐high‐dimensional partial linear model, the procedure enjoys the oracle variable selection property and offers efficiency gain for non‐Gaussian random errors, while maintaining the same efficiency as the least squares‐based estimator for Gaussian random errors. Extensive simulation studies and an empirical application are conducted to demonstrate the effectiveness of the proposed procedure.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12716
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:51:y:2024:i:3:p:1259-1287
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().