Inference for all variants of the multivariate coefficient of variation in factorial designs
Marc Ditzhaus and
Łukasz Smaga
Scandinavian Journal of Statistics, 2025, vol. 52, issue 1, 270-294
Abstract:
The multivariate coefficient of variation (MCV) is an attractive and easy‐to‐interpret effect size for the dispersion in multivariate data. Recently, the first inference methods for the MCV were proposed for general factorial designs. However, the inference methods are primarily derived for one special MCV variant while there are several reasonable proposals. Moreover, when rejecting a global null hypothesis, a more in‐depth analysis is of interest to find the significant contrasts of MCV. This paper concerns extending the nonparametric permutation procedure to the other MCV variants and a max‐type test for post hoc analysis. To improve the small sample performance of the latter, we suggest a novel bootstrap strategy and prove its asymptotic validity. The actual performance of all proposed tests is compared in an extensive simulation study and illustrated by real data analysis. All methods are implemented in the R package GFDmcv, available on CRAN.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12740
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:52:y:2025:i:1:p:270-294
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().