On maximizing the likelihood function of general geostatistical models
Tingjin Chu
Scandinavian Journal of Statistics, 2025, vol. 52, issue 1, 81-103
Abstract:
General geostatistical models are powerful tools for analyzing spatial datasets. A two‐step estimation based on the likelihood function is widely used by researchers, but several theoretical and computational challenges remain to be addressed. First, it is unclear whether there is a unique global maximizer of the log‐likelihood function, a seemingly simple but theoretically challenging question. The second challenge is the convexity of the log‐likelihood function. Besides these two challenges in maximizing the likelihood function, we also study the theoretical property of the two‐step estimation. Unlike many previous works, our results can apply to the non‐twice differentiable covariance functions. In the simulation studies, three optimization algorithms are evaluated in terms of maximizing the log‐likelihood functions.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12722
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:52:y:2025:i:1:p:81-103
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().