A joint estimation approach for monotonic regression functions in general dimensions
Christian Rohrbeck and
Deborah A. Costain
Scandinavian Journal of Statistics, 2025, vol. 52, issue 2, 903-923
Abstract:
Regression analysis under the assumption of monotonicity is a well‐studied statistical problem and has been used in a wide range of applications. However, there remains a lack of a broadly applicable methodology that permits information borrowing, for efficiency gains, when jointly estimating multiple monotonic regression functions. We fill this gap in the literature and introduce a methodology which can be applied to both fixed and random designs and any number of explanatory variables (regressors). Our framework penalizes pairwise differences in the values of the monotonic function estimates, with the weight of penalty being determined, for instance, based on a statistical test for equivalence of functions at a point. Function estimates are subsequently derived using an iterative optimization routine which updates the individual function estimates in turn until convergence. Simulation studies for normally and binomially distributed response data illustrate that function estimates are improved when similarities between functions exist, and are not oversmoothed otherwise. We further apply our methodology to analyze two public health data sets: neonatal mortality data for Porto Alegre, Brazil, and stroke patient data for North West England.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12775
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:52:y:2025:i:2:p:903-923
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().