Nonparametric inference for Poisson‐Laguerre tessellations
Thomas van der Jagt,
Geurt Jongbloed and
Martina Vittorietti
Scandinavian Journal of Statistics, 2025, vol. 52, issue 4, 1816-1851
Abstract:
In this paper, we consider statistical inference for Poisson‐Laguerre tessellations in ℝd$$ {\mathbb{R}}^d $$. The object of interest is a distribution function F$$ F $$ which describes the distribution of the arrival times of the generator points. The function F$$ F $$ uniquely determines the intensity measure of the underlying Poisson process. Two nonparametric estimators for F$$ F $$ are introduced, which depend only on the points of the Poisson process that generate non‐empty cells and the actual cells corresponding to these points. The proposed estimators are proven to be strongly consistent as the observation window expands unboundedly to the whole space. We also consider a stereological setting, where one is interested in estimating the distribution function associated with the Poisson process of a higher‐dimensional Poisson‐Laguerre tessellation, given that a corresponding sectional Poisson‐Laguerre tessellation is observed.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.70011
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:52:y:2025:i:4:p:1816-1851
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().