An ARIMA‐ANN Hybrid Model for Time Series Forecasting
Li Wang,
Haofei Zou,
Jia Su,
Ling Li and
Sohail Chaudhry
Systems Research and Behavioral Science, 2013, vol. 30, issue 3, 244-259
Abstract:
Autoregressive integrated moving average (ARIMA) model has been successfully applied as a popular linear model for economic time series forecasting. In addition, during the recent years, artificial neural networks (ANNs) have been used to capture the complex economic relationships with a variety of patterns as they serve as a powerful and flexible computational tool. However, most of these studies have been characterized by mixed results in terms of the effectiveness of the ANNs model compared with the ARIMA model. In this paper, we propose a hybrid model, which is distinctive in integrating the advantages of ARIMA and ANNs in modeling the linear and nonlinear behaviors in the data set. The hybrid model was tested on three sets of actual data, namely, the Wolf's sunspot data, the Canadian lynx data and the IBM stock price data. Our computational experience indicates the effectiveness of the new combinatorial model in obtaining more accurate forecasting as compared to existing models. Copyright © 2013 John Wiley & Sons, Ltd.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1002/sres.2179
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:srbeha:v:30:y:2013:i:3:p:244-259
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1092-7026
Access Statistics for this article
More articles in Systems Research and Behavioral Science from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().