EconPapers    
Economics at your fingertips  
 

Generative AI and simulation modeling: how should you (not) use large language models like ChatGPT

Ali Akhavan and Mohammad S. Jalali

System Dynamics Review, 2024, vol. 40, issue 3

Abstract: Generative Artificial Intelligence (AI) tools, such as Large Language Models (LLMs) and chatbots like ChatGPT, hold promise for advancing simulation modeling. Despite their growing prominence and associated debates, there remains a gap in comprehending the potential of generative AI in this field and a lack of guidelines for its effective deployment. This article endeavors to bridge these gaps. We discuss the applications of ChatGPT through an example of modeling COVID‐19's impact on economic growth in the United States. However, our guidelines are generic and can be applied to a broader range of generative AI tools. Our work presents a systematic approach for integrating generative AI across the simulation research continuum, from problem articulation to insight derivation and documentation, independent of the specific simulation modeling method. We emphasize while these tools offer enhancements in refining ideas and expediting processes, they should complement rather than replace critical thinking inherent to research. © 2024 The Authors. System Dynamics Review published by John Wiley & Sons Ltd on behalf of System Dynamics Society.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/sdr.1773

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:sysdyn:v:40:y:2024:i:3:n:e1773

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0883-7066

Access Statistics for this article

More articles in System Dynamics Review from System Dynamics Society
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:sysdyn:v:40:y:2024:i:3:n:e1773