Stabilization of non‐native polymorphs for electrocatalysis and energy storage systems
Sulay Saha,
Prashant Kumar Gupta and
Raj Ganesh S. Pala
Wiley Interdisciplinary Reviews: Energy and Environment, 2021, vol. 10, issue 2
Abstract:
Evolution in material centric devices like batteries and electrocatalytic reactors have predominantly been made possible via the exploitation of the thermodynamic ground state of pristine or defective bulk crystal, referred to as the “Native polymorph” (NP) here. A significant increase in the material search space is possible by utilizing “Non‐Native polymorphs (NNP),” which are materials that have different translational symmetry with respect to NP. As the NNP have a distinct coordination structure from that of the NP, critical material properties can be anticipated to be different, making NNP a potential substitute material for the aforementioned applications, which are the focus of this review. To obtain a structure–function relationship, systematic approaches to the synthesis of NNP has been demonstrated. Following certain generalities behind NNP, we classify synthesis techniques into few categories with the hope of rationalizing the underlying mechanism of these synthesis and stabilization strategies. We discuss the utility of NNPs in the context of electrochemical water electrocatalytic reactions. Typically, the NNPs have more open volume space enabling lower lithium‐ion diffusion barrier, higher lithium‐ion binding energies, thereby making NNP efficient in the context of energy storage material. However, NNP have lesser stability than the NP and methods to calibrate and improve the stability of NNP are important. Overall, the discussion of polymorphic materials by demarcating them as NP and NNP provides a systematic approach towards modulating material properties as a trade‐off between thermodynamics and kinetics of physicochemical processes. Finally, the challenges and perspectives in this emerging field are discussed. This article is categorized under: Fuel Cells and Hydrogen > Science and Materials Energy Research & Innovation > Science and Materials Energy and Development > Science and Materials
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/wene.389
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:wireae:v:10:y:2021:i:2:n:e389
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=2041-8396
Access Statistics for this article
Wiley Interdisciplinary Reviews: Energy and Environment is currently edited by Peter Lund and John Byrne
More articles in Wiley Interdisciplinary Reviews: Energy and Environment from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().