EconPapers    
Economics at your fingertips  
 

Hydrolysis and fermentation for cellulosic ethanol production

Charilaos Xiros, Evangelos Topakas and Paul Christakopoulos

Wiley Interdisciplinary Reviews: Energy and Environment, 2013, vol. 2, issue 6, 633-654

Abstract: Second‐generation bioethanol produced from various lignocellulosic materials, such as wood, agricultural, or forest residues, has the potential to be a valuable substitute for, or a complement to, gasoline. At least three major factors—rapidly increasing atmospheric CO2 levels, dwindling fossil fuel reserves, and their rising costs—suggest that we now need to accelerate research plans to make greater use of plant‐based biomass for energy production and as a chemical feedstock as part of a sustainable energy economy. Optimizing the production of bioethanol to be competitive with petrochemical fuels is the main challenge for the underlying process development. The exhaustive research on enzyme technology during the latest years, resulting in significant advances in the field, show the importance of the enzymatic hydrolysis for a profitable ethanol production process. On the other hand, the persisting challenges in biomass pretreatment, which are the initial steps in most process designs, show the remarkable recalcitrance of the lignocellulosic materials to biological degradation. The recent scientific trends show toward an integrated overall bioconversion process in which fermentation technology and genetic engineering of ethanologenic microorganisms aim not only at maximizing yields and productivities but also at widening the range of fermentation products and applications. This article is categorized under: Bioenergy > Science and Materials

Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1002/wene.49

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:wireae:v:2:y:2013:i:6:p:633-654

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=2041-8396

Access Statistics for this article

Wiley Interdisciplinary Reviews: Energy and Environment is currently edited by Peter Lund and John Byrne

More articles in Wiley Interdisciplinary Reviews: Energy and Environment from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:wireae:v:2:y:2013:i:6:p:633-654