Separation technologies for current and future biorefineries—status and potential of membrane‐based separation
Lan Ying Jiang and
Jia Ming Zhu
Wiley Interdisciplinary Reviews: Energy and Environment, 2013, vol. 2, issue 6, 673-690
Abstract:
Biorefinery is one of the most important industries in the modern world, as it provides a variety of products, particularly renewable bioenergy, which is highly vital to human existence (?). Among the separation technologies applied in biorefinery, membrane‐based separation has received great attention in past decades as it is in line with the worldwide move toward higher energy efficiency and lower environmental impact. Analysis of the academic and industrial activities being undertaken reveals that porous membranes like nanofiltration, ultrafiltration, and microfiltration are generally associated with pretreatment and hydrolysis procedures where separation is relied on for recovering value‐added materials with wide range of molecular weight and facilitating follow‐up bioconversion. An emerging field that highly appreciates porous membranes is biodiesel purification. Molecular level separations including gas product separation existing in thermal and anaerobic conversions and liquid alcoholic products recovery in microbial/enzymatic process offer more opportunity to membrane‐based gas separation and pervaporation using dense membranes. Membrane distillation and supported liquid membrane, commonly classed as new generation of membrane technology, show the potential in bioethanol recovery and hydrolysis step, respectively. Nonetheless, their competitiveness is to be confirmed. The function of membrane separation is being pushed further. Bearing in mind the importance of membranes with higher quality in terms of separation efficiency and material stability, we must also be prepared for the challenges deriving from some engineering aspects such as membrane fouling, module design, and process optimization. This article is categorized under: Bioenergy > Science and Materials
Date: 2013
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/wene.73
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:wireae:v:2:y:2013:i:6:p:673-690
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=2041-8396
Access Statistics for this article
Wiley Interdisciplinary Reviews: Energy and Environment is currently edited by Peter Lund and John Byrne
More articles in Wiley Interdisciplinary Reviews: Energy and Environment from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().