Stochastic and deterministic trend models
Estela Bee Dagum and
Camilo Dagum
Authors registered in the RePEc Author Service: Estelle Bee Dagum
Statistica, 2006, vol. 66, issue 3, 269-280
Abstract:
In this paper we provide an overview of some trend models formulated for global and local estimation. Global trend models are based on the assumption that the trend or nonstationary mean of a time series can be approximated closely by simple functions of time over the entire span of the series. The most common representation of deterministic and stochastic trend are introduced. In particular, for the former we analyze polynomial and transcendental functions, whereas for the latter we assume that the series from which the trend will be identified follows a homogeneous linear nonstationary stochastic process. Recently more attention has been oriented on the analysis of the short term trend, that includes cyclical fluctuations and is referred to as trend-cycle. At this regard, we analyze the local polynomial regression predictors developed by Henderson (1916) and LOESS due to Cleveland (1979), which are the most widely applied to estimate the short term local trend of seasonally adjusted economic indicators.
Date: 2006
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bot:rivsta:v:66:y:2006:i:3:p:269-280
Access Statistics for this article
Statistica is currently edited by Department of Statistics, University of Bologna
More articles in Statistica from Department of Statistics, University of Bologna Contact information at EDIRC.
Bibliographic data for series maintained by Giovanna Galatà ().