Improving robust ratio estimation in longitudinal surveys with outlier observations
Roberto Gismondi
Statistica, 2010, vol. 70, issue 1, 23-39
Abstract:
The Hulliger’s robust estimation technique consists in the re-weighting of units identified as outliers through a Robustified Ratio Estimator (RRE), according to which outliers Improving robust ratio estimation in longitudinal surveys with outlier observations 17 contribute to the final estimate with a sample weight reduced with respect to the original one. Outlier observations are identified through a standardised function founded on the difference between observed and expected values. A crucial aspect concerns the choice of the acceptation threshold, which plays a role in the re-weighting process as well. In this context, we propose some potential improvements of the RRE, concerning the use of an objective criterion for fixing the threshold and the re-weighting rules. Results of two empirical attempts based on real data derived from longitudinal surveys show that, in the most part of case studies, the proposed changes contribute to improve efficiency of estimates with respect to the ordinary ratio estimator.
Date: 2010
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bot:rivsta:v:70:y:2010:i:1:p:23-39
Access Statistics for this article
Statistica is currently edited by Department of Statistics, University of Bologna
More articles in Statistica from Department of Statistics, University of Bologna Contact information at EDIRC.
Bibliographic data for series maintained by Giovanna Galatà ().