Least Orthogonal Distance Estimator and Total Least Square for Simultaneous Equation Models
Alessia Naccarato,
Davide Zurlo () and
Luciano Pieraccini ()
Additional contact information
Davide Zurlo: ISTAT, Istituto Nazionale di Statistica, Roma - Italy
Luciano Pieraccini: Università degli Studi Roma Tre, Roma - Italy
Statistica, 2013, vol. 73, issue 2, 201-219
Abstract:
Least Orthogonal Distance Estimator (LODE) of Simultaneous Equation Models’ structural parameters is based on minimizing the orthogonal distance between Reduced Form (RF) and the Structural Form (SF) parameters. In this work we propose a new version – with respect to Pieraccini and Naccarato (2008) – of Full Information (FI) LODE based on decomposition of a new structure of the variance-covariance matrix using Singular Value Decomposition (SVD) instead of Spectral Decomposition (SD). In this context Total Least Square is applied. A simulation experiment to compare the performances of the new version of FI LODE with respect to Three Stage Least Square (3SLS) and Full Information Maximum Likelihood (FIML) is presented. Finally a comparison between the FI LODE new and old version together with few words of conclusion conclude the paper
Date: 2013
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bot:rivsta:v:73:y:2013:i:2:p:201-219
Access Statistics for this article
Statistica is currently edited by Department of Statistics, University of Bologna
More articles in Statistica from Department of Statistics, University of Bologna Contact information at EDIRC.
Bibliographic data for series maintained by Giovanna Galatà ().