Methods of Estimating the Parameters of the Quasi Lindley Distribution
Festus Opone () and
Nosakhare Ekhosuehi ()
Additional contact information
Festus Opone: University of Benin - Nigeria
Nosakhare Ekhosuehi: University of Benin - Nigeria
Statistica, 2018, vol. 78, issue 2, 183-193
Abstract:
In this paper, we review the quasi Lindley distribution and established its quantile function. A simulation study is conducted to examine the bias and mean square error of the parameter estimates of the distribution through the method of moment estimation and the maximum likelihood estimation. Result obtained shows that the method of maximum likelihood is a better choice of estimation method for the parameters of the quasi Lindley distribution. Finally, an applicability of the quasi Lindley disttribution to a waiting time data set suggests that the distribution demonstrates superiority over the power Lindley distribution, Sushila distribution and the classical oneparameter Lindley distribution in terms of the maximized loglikelihood, the Akaike information criterion, the Kolmogorov-Smirnov and Cramér von Mises test statistic.
Keywords: Quasi Lindley distribution; Quantile function; Moment estimation; Maximum likelihood estimation. (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bot:rivsta:v:78:y:2018:i:2:p:183-193
Access Statistics for this article
Statistica is currently edited by Department of Statistics, University of Bologna
More articles in Statistica from Department of Statistics, University of Bologna Contact information at EDIRC.
Bibliographic data for series maintained by Giovanna Galatà ().