DISCRETE POWER DISTRIBUTIONS AND INFERENCE USING LIKELIHOOD
Andrea Pallini ()
Additional contact information
Andrea Pallini: Dipartimento di Economia e Management, Università di Pisa
Statistica, 2018, vol. 78, issue 4, 335-362
Abstract:
Discrete power distributions are proposed and studied, by considering the positive jumps on the discontinuities of an original discrete distribution function. Inequalities in moments and distribution functions are studied, allowing the definition of discrete intermediate distributions that lie between an original distribution and a power distribution. Original uniform, binomial, Poisson, negative binomial, and hypergeometric distributions are considered, to propose new power and intermediate distributions. Stochastic orders and unimodality are discussed. Estimation problems using likelihood are investigated. Simulation experiments are performed, to evaluate the bias and the mean square error of the maximum likelihood estimates, that are numerically calculated, with classic tools for numerical optimization.
Keywords: Asymptotics; Inequalities; Information; Intermediate distributions; Maximum likelihood estimation; Power distributions; Stochastic orders; Unimodality (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bot:rivsta:v:78:y:2018:i:4:p:335-362
Access Statistics for this article
Statistica is currently edited by Department of Statistics, University of Bologna
More articles in Statistica from Department of Statistics, University of Bologna Contact information at EDIRC.
Bibliographic data for series maintained by Giovanna Galatà ().