A Height-Based Multidimensional Extension of the Lorenz Preorder for Integer-Valued Distributions
Savaglio Ernesto () and
Vannucci Stefano ()
Additional contact information
Savaglio Ernesto: Dipartimento di Economia, Universita degli Studi Gabriele d’Annunzio Chieti e Pescara, viale Pindaro, 42, Pescara65127, Italy; Dipartimento di Economia Politica e Statistica, Universita degli Studi di Siena, piazza San Francesco, 7, Siena53100, Italy
Vannucci Stefano: Dipartimento di Economia Politica e Statistica, Universita degli Studi di Siena, piazza San Francesco, 7, Siena53100, Italy
The B.E. Journal of Theoretical Economics, 2017, vol. 17, issue 2, 8
Abstract:
We study multidimensional inequality on integers. In such a setting, a Lorenz-like preorder and a suitably adapted version of the Muirhead-Pigou-Dalton transfers are defined, and a counterpart of some classic results on inequality measurement is established in this multivariate setting.
Keywords: height-function; multidimensional inequality; poset; transfers (search for similar items in EconPapers)
JEL-codes: D31 D63 I31 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/bejte-2016-0113 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:bejtec:v:17:y:2017:i:2:p:8:n:9
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/bejte/html
DOI: 10.1515/bejte-2016-0113
Access Statistics for this article
The B.E. Journal of Theoretical Economics is currently edited by Burkhard C. Schipper
More articles in The B.E. Journal of Theoretical Economics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().