Randomization-based, Bayesian inference of causal effects
Leavitt Thomas ()
Additional contact information
Leavitt Thomas: Marxe School of Public and International Affairs, Baruch College, City University of New York (CUNY), 135 East 22nd Street, New York, NY 10011, USA
Journal of Causal Inference, 2023, vol. 11, issue 1, 25
Abstract:
Bayesian causal inference in randomized experiments usually imposes model-based structure on potential outcomes. Yet causal inferences from randomized experiments are especially credible because they depend on a known assignment process, not a probability model of potential outcomes. In this article, I derive a randomization-based procedure for Bayesian inference of causal effects in a finite population setting. I formally show that this procedure satisfies Bayesian analogues of unbiasedness and consistency under weak conditions on a prior distribution. Unlike existing model-based methods of Bayesian causal inference, my procedure supposes neither probability models that generate potential outcomes nor independent and identically distributed random sampling. Unlike existing randomization-based methods of Bayesian causal inference, my procedure does not suppose that potential outcomes are discrete and bounded. Consequently, researchers can reap the benefits of Bayesian inference without sacrificing the properties that make inferences from randomized experiments especially credible in the first place.
Keywords: design-based inference; potential outcomes; finite population inference; limited information likelihood (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/jci-2022-0025 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:causin:v:11:y:2023:i:1:p:25:n:1
DOI: 10.1515/jci-2022-0025
Access Statistics for this article
Journal of Causal Inference is currently edited by Elias Bareinboim, Jin Tian and Iván Díaz
More articles in Journal of Causal Inference from De Gruyter
Bibliographic data for series maintained by Peter Golla ().