EconPapers    
Economics at your fingertips  
 

Adaptive normalization for IPW estimation

Khan Samir () and Ugander Johan ()
Additional contact information
Khan Samir: Department of Statistics, Stanford University, Stanford, CA 94305, United States
Ugander Johan: Department of Management Science and Engineering, Stanford University, Stanford, CA 94305, United States

Journal of Causal Inference, 2023, vol. 11, issue 1, 33

Abstract: Inverse probability weighting (IPW) is a general tool in survey sampling and causal inference, used in both Horvitz–Thompson estimators, which normalize by the sample size, and Hájek/self-normalized estimators, which normalize by the sum of the inverse probability weights. In this work, we study a family of IPW estimators, first proposed by Trotter and Tukey in the context of Monte Carlo problems, that are normalized by an affine combination of the sample size and a sum of inverse weights. We show how selecting an estimator from this family in a data-dependent way to minimize asymptotic variance leads to an iterative procedure that converges to an estimator with connections to regression control methods. We refer to such estimators as adaptively normalized estimators. For mean estimation in survey sampling, the adaptively normalized estimator has asymptotic variance that is never worse than the Horvitz–Thompson and Hájek estimators. Going further, we show that adaptive normalization can be used to propose improvements of the augmented IPW (AIPW) estimator, average treatment effect (ATE) estimators, and policy learning objectives. Appealingly, these proposals preserve both the asymptotic efficiency of AIPW and the regret bounds for policy learning with IPW objectives, and deliver consistent finite sample improvements in simulations for all three of mean estimation, ATE estimation, and policy learning.

Keywords: inverse probability weighting; Horvitz–Thompson; Hájek; ATE estimation; survey sampling (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/jci-2022-0019 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:causin:v:11:y:2023:i:1:p:33:n:1

DOI: 10.1515/jci-2022-0019

Access Statistics for this article

Journal of Causal Inference is currently edited by Elias Bareinboim, Jin Tian and Iván Díaz

More articles in Journal of Causal Inference from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:causin:v:11:y:2023:i:1:p:33:n:1