A General Algorithm for Deciding Transportability of Experimental Results
Bareinboim Elias () and
Pearl Judea ()
Additional contact information
Bareinboim Elias: Department of Computer Science, University of California, Los Angeles, CA, USA
Pearl Judea: Department of Computer Science, University of California, Los Angeles, CA, USA
Journal of Causal Inference, 2013, vol. 1, issue 1, 107-134
Abstract:
Generalizing empirical findings to new environments, settings, or populations is essential in most scientific explorations. This article treats a particular problem of generalizability, called “transportability”, defined as a license to transfer information learned in experimental studies to a different population, on which only observational studies can be conducted. Given a set of assumptions concerning commonalities and differences between the two populations, Pearl and Bareinboim [1] derived sufficient conditions that permit such transfer to take place. This article summarizes their findings and supplements them with an effective procedure for deciding when and how transportability is feasible. It establishes a necessary and sufficient condition for deciding when causal effects in the target population are estimable from both the statistical information available and the causal information transferred from the experiments. The article further provides a complete algorithm for computing the transport formula, that is, a way of combining observational and experimental information to synthesize bias-free estimate of the desired causal relation. Finally, the article examines the differences between transportability and other variants of generalizability.
Keywords: causal effects; experimental findings; generalizability; transportability; external validity (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/jci-2012-0004 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:causin:v:1:y:2013:i:1:p:107-134:n:3
DOI: 10.1515/jci-2012-0004
Access Statistics for this article
Journal of Causal Inference is currently edited by Elias Bareinboim, Jin Tian and Iván Díaz
More articles in Journal of Causal Inference from De Gruyter
Bibliographic data for series maintained by Peter Golla ().