Unifying Gaussian LWF and AMP Chain Graphs to Model Interference
Peña Jose M. ()
Additional contact information
Peña Jose M.: IDA, Linköping University, Linköping, Sweden
Journal of Causal Inference, 2020, vol. 8, issue 1, 1-21
Abstract:
An intervention may have an effect on units other than those to which it was administered. This phenomenon is called interference and it usually goes unmodeled. In this paper, we propose to combine Lauritzen-Wermuth-Frydenberg and Andersson-Madigan-Perlman chain graphs to create a new class of causal models that can represent both interference and non-interference relationships for Gaussian distributions. Specifically, we define the new class of models, introduce global and local and pairwise Markov properties for them, and prove their equivalence. We also propose an algorithm for maximum likelihood parameter estimation for the new models, and report experimental results. Finally, we show how to compute the effects of interventions in the new models.
Keywords: Chain graphs; interference; linear-Gaussian models (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/jci-2018-0034 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:causin:v:8:y:2020:i:1:p:1-21:n:3
DOI: 10.1515/jci-2018-0034
Access Statistics for this article
Journal of Causal Inference is currently edited by Elias Bareinboim, Jin Tian and Iván Díaz
More articles in Journal of Causal Inference from De Gruyter
Bibliographic data for series maintained by Peter Golla ().