Causal versions of maximum entropy and principle of insufficient reason
Janzing Dominik ()
Additional contact information
Janzing Dominik: Causality Team, Amazon Research, Tübingen, Germany
Journal of Causal Inference, 2021, vol. 9, issue 1, 285-301
Abstract:
The principle of insufficient reason (PIR) assigns equal probabilities to each alternative of a random experiment whenever there is no reason to prefer one over the other. The maximum entropy principle (MaxEnt) generalizes PIR to the case where statistical information like expectations are given. It is known that both principles result in paradoxical probability updates for joint distributions of cause and effect. This is because constraints on the conditional P ( effect ∣ cause ) P\left({\rm{effect}}| {\rm{cause}}) result in changes of P ( cause ) P\left({\rm{cause}}) that assign higher probability to those values of the cause that offer more options for the effect, suggesting “intentional behavior.” Earlier work therefore suggested sequentially maximizing (conditional) entropy according to the causal order, but without further justification apart from plausibility on toy examples. We justify causal modifications of PIR and MaxEnt by separating constraints into restrictions for the cause and restrictions for the mechanism that generates the effect from the cause. We further sketch why causal PIR also entails “Information Geometric Causal Inference.” We briefly discuss problems of generalizing the causal version of MaxEnt to arbitrary causal DAGs.
Keywords: cause–effect problem; independence of mechanisms; arrow of time (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/jci-2021-0022 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:causin:v:9:y:2021:i:1:p:285-301:n:6
DOI: 10.1515/jci-2021-0022
Access Statistics for this article
Journal of Causal Inference is currently edited by Elias Bareinboim, Jin Tian and Iván Díaz
More articles in Journal of Causal Inference from De Gruyter
Bibliographic data for series maintained by Peter Golla ().