Piecewise Cause-Specific Association Analyses of Multivariate Untied or Tied Competing Risks Data
Wang Hao () and
Cheng Yu ()
Additional contact information
Wang Hao: Amgen, Thousand Oaks, CA, USA
Cheng Yu: Department of Statistics and Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA
The International Journal of Biostatistics, 2014, vol. 10, issue 2, 197-220
Abstract:
In this paper we extend the bivariate hazard ratio to multivariate competing risks data and show that it is equivalent to the cause-specific cross hazard ratio. Two approaches are proposed to estimate these two equivalent association measures. One extends the plug-in estimator, and the other adapts the pseudo-likelihood estimator for bivariate survival data to multivariate competing risks data. The asymptotic properties of the extended estimators are established by using empirical processes techniques. The extended plug-in and pseudo-likelihood estimators have comparable performance with the existing U-statistic when the data have no tied events. However, in many applications, there are tied events in which all the three estimators are found to produce biased results. To our best knowledge, we are not aware of any association analysis for multivariate competing risks data that has considered tied events. Hence we propose a modified U-statistic to specifically handle tied observations. The modified U-statistic clearly outperforms the other estimators when there are rounding errors. All methods are applied to the Cache County Study to examine mother–child and sibship associations in dementia among this aging population, where the event times are rounded to the nearest integers. The modified U performs consistently with our simulation results and provides more reliable results in the presence of tied events.
Keywords: cause-specific hazard function; cross hazard ratio; pseudo-likelihood estimator; tied events; U-statistic (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/ijb-2013-0023 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:ijbist:v:10:y:2014:i:2:p:24:n:3
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/ijb/html
DOI: 10.1515/ijb-2013-0023
Access Statistics for this article
The International Journal of Biostatistics is currently edited by Antoine Chambaz, Alan E. Hubbard and Mark J. van der Laan
More articles in The International Journal of Biostatistics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().