EconPapers    
Economics at your fingertips  
 

Quantifying an Agreement Study

Liao Jason J. Z. ()
Additional contact information
Liao Jason J. Z.: Novartis Pharmaceutical Corporation, One Health Plaza, East Hanover, NJ 07936, USA

The International Journal of Biostatistics, 2015, vol. 11, issue 1, 125-133

Abstract: In medical and other related sciences, clinical or experimental measurements usually serve as a basis for diagnostic, prognostic, therapeutic, and performance evaluations. Examples can be assessing the reliability of multiple raters (or measurement methods), assessing the suitability for tumor evaluation of using a local laboratory or a central laboratory in a randomized clinical trial (RCT), validating surrogate endpoints in a study, determining that the important outcome measurements are interchangeable among the evaluators in an RCT. Any elegant study design cannot overcome the damage by unreliable measurement. Many methods have been developed to assess the agreement of two measurement methods. However, there is little attention to quantify how good the agreement of two measurement methods is. In this paper, similar to the type I error and the power in describing a hypothesis testing, we propose quantifying an agreement assessment using two rates: the discordance rate and the tolerance probability. This approach is demonstrated through examples.

Keywords: agreement; agreement interval; concordance; discordance rate; quantification; sample size; tolerance probability (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/ijb-2014-0030 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:ijbist:v:11:y:2015:i:1:p:125-133:n:6

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/ijb/html

DOI: 10.1515/ijb-2014-0030

Access Statistics for this article

The International Journal of Biostatistics is currently edited by Antoine Chambaz, Alan E. Hubbard and Mark J. van der Laan

More articles in The International Journal of Biostatistics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:ijbist:v:11:y:2015:i:1:p:125-133:n:6