Evaluations of the Optimal Discovery Procedure for Multiple Testing
Rubin Daniel B. ()
Additional contact information
Rubin Daniel B.: U.S. Food and Drug Administration, Silver Spring, MD, USA
The International Journal of Biostatistics, 2016, vol. 12, issue 1, 21-29
Abstract:
The Optimal Discovery Procedure (ODP) is a method for simultaneous hypothesis testing that attempts to gain power relative to more standard techniques by exploiting multivariate structure [1]. Specializing to the example of testing whether components of a Gaussian mean vector are zero, we compare the power of the ODP to a Bonferroni-style method and to the Benjamini-Hochberg method when the testing procedures aim to respectively control certain Type I error rate measures, such as the expected number of false positives or the false discovery rate. We show through theoretical results, numerical comparisons, and two microarray examples that when the rejection regions for the ODP test statistics are chosen such that the procedure is guaranteed to uniformly control a Type I error rate measure, the technique is generally less powerful than competing methods. We contrast and explain these results in light of previously proven optimality theory for the ODP. We also compare the ordering given by the ODP test statistics to the standard rankings based on sorting univariate p-values from smallest to largest. In the cases we considered the standard ordering was superior, and ODP rankings were adversely impacted by correlation.
Keywords: optimal discovery procedure; multiple testing; ranking (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/ijb-2015-0027 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:ijbist:v:12:y:2016:i:1:p:21-29:n:10
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/ijb/html
DOI: 10.1515/ijb-2015-0027
Access Statistics for this article
The International Journal of Biostatistics is currently edited by Antoine Chambaz, Alan E. Hubbard and Mark J. van der Laan
More articles in The International Journal of Biostatistics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().