Doubly Robust and Efficient Estimation of Marginal Structural Models for the Hazard Function
Zheng Wenjing (),
Petersen Maya and
J. van der Laan Mark
Additional contact information
Zheng Wenjing: School of Public Health, University of California, Berkeley, 590D University Hall, Berkeley, CA 94704, USA
Petersen Maya: School of Public Health, University of California, Berkeley, Berkeley, CA 94704, USA
J. van der Laan Mark: School of Public Health, University of California, Berkeley, Berkeley, CA 94704, USA
The International Journal of Biostatistics, 2016, vol. 12, issue 1, 233-252
Abstract:
In social and health sciences, many research questions involve understanding the causal effect of a longitudinal treatment on mortality (or time-to-event outcomes in general). Often, treatment status may change in response to past covariates that are risk factors for mortality, and in turn, treatment status may also affect such subsequent covariates. In these situations, Marginal Structural Models (MSMs), introduced by Robins (1997. Marginal structural models Proceedings of the American Statistical Association. Section on Bayesian Statistical Science, 1–10), are well-established and widely used tools to account for time-varying confounding. In particular, a MSM can be used to specify the intervention-specific counterfactual hazard function, i. e. the hazard for the outcome of a subject in an ideal experiment where he/she was assigned to follow a given intervention on their treatment variables. The parameters of this hazard MSM are traditionally estimated using the Inverse Probability Weighted estimation Robins (1999. Marginal structural models versus structural nested models as tools for causal inference. In: Statistical models in epidemiology: the environment and clinical trials. Springer-Verlag, 1999:95–134), Robins et al. (2000), (IPTW, van der Laan and Petersen (2007. Causal effect models for realistic individualized treatment and intention to treat rules. Int J Biostat 2007;3:Article 3), Robins et al. (2008. Estimaton and extrapolation of optimal treatment and testing strategies. Statistics in Medicine 2008;27(23):4678–721)). This estimator is easy to implement and admits Wald-type confidence intervals. However, its consistency hinges on the correct specification of the treatment allocation probabilities, and the estimates are generally sensitive to large treatment weights (especially in the presence of strong confounding), which are difficult to stabilize for dynamic treatment regimes. In this paper, we present a pooled targeted maximum likelihood estimator (TMLE, van der Laan and Rubin (2006. Targeted maximum likelihood learning. The International Journal of Biostatistics 2006;2:1–40)) for MSM for the hazard function under longitudinal dynamic treatment regimes. The proposed estimator is semiparametric efficient and doubly robust, offering bias reduction over the incumbent IPTW estimator when treatment probabilities may be misspecified. Moreover, the substitution principle rooted in the TMLE potentially mitigates the sensitivity to large treatment weights in IPTW. We compare the performance of the proposed estimator with the IPTW and a on-targeted substitution estimator in a simulation study.
Keywords: targeted maximum likelihood estimation; inverse probability weighting; doubly robust; efficient; marginal structural models (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/ijb-2015-0036 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:ijbist:v:12:y:2016:i:1:p:233-252:n:17
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/ijb/html
DOI: 10.1515/ijb-2015-0036
Access Statistics for this article
The International Journal of Biostatistics is currently edited by Antoine Chambaz, Alan E. Hubbard and Mark J. van der Laan
More articles in The International Journal of Biostatistics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().