EconPapers    
Economics at your fingertips  
 

Integrating additional knowledge into the estimation of graphical models

Bu Yunqi () and Lederer Johannes ()
Additional contact information
Bu Yunqi: Departments of Statistics and Biostatistics, University of Washington, Seattle, USA
Lederer Johannes: Departments of Statistics and Biostatistics, University of Washington, Seattle, USA

The International Journal of Biostatistics, 2022, vol. 18, issue 1, 1-17

Abstract: Graphical models such as brain connectomes derived from functional magnetic resonance imaging (fMRI) data are considered a prime gateway to understanding network-type processes. We show, however, that standard methods for graphical modeling can fail to provide accurate graph recovery even with optimal tuning and large sample sizes. We attempt to solve this problem by leveraging information that is often readily available in practice but neglected, such as the spatial positions of the measurements. This information is incorporated into the tuning parameter of neighborhood selection, for example, in the form of pairwise distances. Our approach is computationally convenient and efficient, carries a clear Bayesian interpretation, and improves standard methods in terms of statistical stability. Applied to data about Alzheimer’s disease, our approach allows us to highlight the central role of lobes in the connectivity structure of the brain and to identify an increased connectivity within the cerebellum for Alzheimer’s patients compared to other subjects.

Keywords: brain connectivity networks; prior knowledge; tuning parameters (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/ijb-2020-0133 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:ijbist:v:18:y:2022:i:1:p:1-17:n:4

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/ijb/html

DOI: 10.1515/ijb-2020-0133

Access Statistics for this article

The International Journal of Biostatistics is currently edited by Antoine Chambaz, Alan E. Hubbard and Mark J. van der Laan

More articles in The International Journal of Biostatistics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:ijbist:v:18:y:2022:i:1:p:1-17:n:4