Multiple scaled symmetric distributions in allometric studies
Punzo Antonio () and
Bagnato Luca ()
Additional contact information
Punzo Antonio: Dipartimento di Economia e Impresa, Università di Catania, Catania, Italy
Bagnato Luca: Dipartimento di Scienze Economiche e Sociali, Università Cattolica del Sacro Cuore, Piacenza, Italy
The International Journal of Biostatistics, 2022, vol. 18, issue 1, 219-242
Abstract:
In allometric studies, the joint distribution of the log-transformed morphometric variables is typically symmetric and with heavy tails. Moreover, in the bivariate case, it is customary to explain the morphometric variation of these variables by fitting a convenient line, as for example the first principal component (PC). To account for all these peculiarities, we propose the use of multiple scaled symmetric (MSS) distributions. These distributions have the advantage to be directly defined in the PC space, the kind of symmetry involved is less restrictive than the commonly considered elliptical symmetry, the behavior of the tails can vary across PCs, and their first PC is less sensitive to outliers. In the family of MSS distributions, we also propose the multiple scaled shifted exponential normal distribution, equivalent of the multivariate shifted exponential normal distribution in the MSS framework. For the sake of parsimony, we also allow the parameter governing the leptokurtosis on each PC, in the considered MSS distributions, to be tied across PCs. From an inferential point of view, we describe an EM algorithm to estimate the parameters by maximum likelihood, we illustrate how to compute standard errors of the obtained estimates, and we give statistical tests and confidence intervals for the parameters. We use artificial and real allometric data to appreciate the advantages of the MSS distributions over well-known elliptically symmetric distributions and to compare the robustness of the line from our models with respect to the lines fitted by well-established robust and non-robust methods available in the literature.
Keywords: allometry; EM algorithm; heavy-tailed distributions; line-fitting methods; multiple scaled distributions; scale mixtures (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/ijb-2020-0059 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:ijbist:v:18:y:2022:i:1:p:219-242:n:8
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/ijb/html
DOI: 10.1515/ijb-2020-0059
Access Statistics for this article
The International Journal of Biostatistics is currently edited by Antoine Chambaz, Alan E. Hubbard and Mark J. van der Laan
More articles in The International Journal of Biostatistics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().