Bayesian multi-response nonlinear mixed-effect model: application of two recent HIV infection biomarkers
Castel Charlotte (),
Sommen Cécile,
Chatignoux Edouard,
Le Strat Yann and
Alioum Ahmadou
Additional contact information
Castel Charlotte: Direction Appui, Traitements et Analyses des données, Santé Publique France, 12 Rue du Val d’Osne, Saint-Maurice 94417, Île-de-France, France
Sommen Cécile: Direction Appui, Traitements et Analyses des données, Santé Publique France, 12 Rue du Val d’Osne, Saint-Maurice 94417, Île-de-France, France
Chatignoux Edouard: Direction Appui, Traitements et Analyses des données, Santé Publique France, 12 Rue du Val d’Osne, Saint-Maurice 94417, Île-de-France, France
Le Strat Yann: Direction Appui, Traitements et Analyses des données, Santé Publique France, 12 Rue du Val d’Osne, Saint-Maurice 94417, Île-de-France, France
Alioum Ahmadou: Bordeaux Population Health, Biostatistical Team, Inserm Center U1219, Bordeaux, France
The International Journal of Biostatistics, 2022, vol. 18, issue 2, 455-471
Abstract:
Since the discovery of the human immunodeficiency virus (HIV) 35 years ago, the epidemic is still ongoing in France. To monitor the dynamics of HIV transmission and assess the impact of prevention campaigns, the main indicator is the incidence. One method to estimate the HIV incidence is based on biomarker values at diagnosis and their dynamics over time. Estimating the HIV incidence from biomarkers first requires modeling their dynamics since infection using external longitudinal data. The objective of the work presented here is to estimate the joint dynamics of two biomarkers from the PRIMO cohort. We thus jointly modeled the dynamics of two biomarkers (TM and V3) using a multi-response nonlinear mixed-effect model. The parameters were estimated using Bayesian Hamiltonian Monte Carlo inference. This procedure was first applied to the real data of the PRIMO cohort. In a simulation study, we then evaluated the performance of the Bayesian procedure for estimating the parameters of multi-response nonlinear mixed-effect models.
Keywords: Hamiltonian Monte Carlo inference; HIV biomarkers; multi-response model; nonlinear mixed models (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/ijb-2021-0030 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:ijbist:v:18:y:2022:i:2:p:455-471:n:8
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/ijb/html
DOI: 10.1515/ijb-2021-0030
Access Statistics for this article
The International Journal of Biostatistics is currently edited by Antoine Chambaz, Alan E. Hubbard and Mark J. van der Laan
More articles in The International Journal of Biostatistics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().