Sensitivity of estimands in clinical trials with imperfect compliance
Chen Heng () and
Heitjan Daniel F. ()
Additional contact information
Chen Heng: Biostatistics, Gilead Sciences Inc., Foster City, CA 94404, USA
Heitjan Daniel F.: Department of Statistical Science, Southern Methodist University, Dallas, TX 75205, USA
The International Journal of Biostatistics, 2024, vol. 20, issue 1, 57-67
Abstract:
In clinical trials that are subject to noncompliance, the commonly used intention-to-treat estimand is valid as a causal effect of treatment assignment but is sensitive to the level of compliance. An alternative estimand, the complier average causal effect (CACE), measures the average effect of treatment received in the latent subset of subjects who would comply with either assigned treatment. Because the principal stratum of compliers can vary with the circumstances of the trial, CACE too depends on the compliance fraction. We propose a model in which an underlying latent proto-compliance interacts with trial characteristics to determine a subject’s compliance behavior. When the latent compliance is independent of the individual treatment effect, the average causal effect is constant across compliance classes, and CACE is robust across trials and equal to the population average causal effect. We demonstrate the potential degree of sensitivity of CACE in a simulation study, an analysis of data from a trial of vitamin A supplementation in children, and a meta-analysis of trials of epidural analgesia in labor.
Keywords: complier average causal effect; intention-to-treat; noncompliance; randomization; sensitivity (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/ijb-2022-0105 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:ijbist:v:20:y:2024:i:1:p:57-67:n:1013
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/ijb/html
DOI: 10.1515/ijb-2022-0105
Access Statistics for this article
The International Journal of Biostatistics is currently edited by Antoine Chambaz, Alan E. Hubbard and Mark J. van der Laan
More articles in The International Journal of Biostatistics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().