EconPapers    
Economics at your fingertips  
 

Bayesian second-order sensitivity of longitudinal inferences to non-ignorability: an application to antidepressant clinical trial data

Momeni Roochi Elahe () and Eftekhari Mahabadi Samaneh ()
Additional contact information
Momeni Roochi Elahe: School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
Eftekhari Mahabadi Samaneh: School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran

The International Journal of Biostatistics, 2024, vol. 20, issue 2, 599-629

Abstract: Incomplete data is a prevalent complication in longitudinal studies due to individuals’ drop-out before intended completion time. Currently available methods via commercial software for analyzing incomplete longitudinal data at best rely on the ignorability of the drop-outs. If the underlying missing mechanism was non-ignorable, potential bias arises in the statistical inferences. To remove the bias when the drop-out is non-ignorable, joint complete-data and drop-out models have been proposed which involve computational difficulties and untestable assumptions. Since the critical ignorability assumption is unverifiable based on the observed part of the sample, some local sensitivity indices have been proposed in the literature. Specifically, Eftekhari Mahabadi (Second-order local sensitivity to non-ignorability in Bayesian inferences. Stat Med 2018;59:55–95) proposed a second-order local sensitivity tool for Bayesian analysis of cross-sectional studies and show its better performance for handling bias compared with the first-order ones. In this paper, we aim to extend this index for the Bayesian sensitivity analysis of normal longitudinal studies with drop-outs. The index is driven based on a selection model for the drop-out mechanism and a Bayesian linear mixed-effect complete-data model. The presented formulas are calculated using the posterior estimation and draws from the simpler ignorable model. The method is illustrated via some simulation studies and sensitivity analysis of a real antidepressant clinical trial data. Overall, the numerical analysis showed that when repeated outcomes are subject to missingness, regression coefficient estimates are nearly approximated well by a linear function in the neighbourhood of MAR model, but there are a considerable amount of second-order sensitivity for the error term and random effect variances in Bayesian linear mixed-effect model framework.

Keywords: second-order local sensitivity; normal longitudinal data; informative drop-out; Bayesian approach; linear mixed-effect model (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/ijb-2022-0014 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:ijbist:v:20:y:2024:i:2:p:599-629:n:1001

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/ijb/html

DOI: 10.1515/ijb-2022-0014

Access Statistics for this article

The International Journal of Biostatistics is currently edited by Antoine Chambaz, Alan E. Hubbard and Mark J. van der Laan

More articles in The International Journal of Biostatistics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:ijbist:v:20:y:2024:i:2:p:599-629:n:1001