EconPapers    
Economics at your fingertips  
 

Relative Risk Estimation in Randomized Controlled Trials: A Comparison of Methods for Independent Observations

Yelland Lisa N, Salter Amy B and Ryan Philip

The International Journal of Biostatistics, 2011, vol. 7, issue 1, 1-31

Abstract: The relative risk is a clinically important measure of the effect of treatment on binary outcomes in randomized controlled trials (RCTs). An adjusted relative risk can be estimated using log binomial regression; however, convergence problems are common with this model. While alternative methods have been proposed for estimating relative risks, comparisons between methods have been limited, particularly in the context of RCTs. We compare ten different methods for estimating relative risks under a variety of scenarios relevant to RCTs with independent observations. Results of a large simulation study show that some methods may fail to overcome the convergence problems of log binomial regression, while others may substantially overestimate the treatment effect or produce inaccurate confidence intervals. Further, conclusions about the effectiveness of treatment may differ depending on the method used. We give recommendations for choosing a method for estimating relative risks in the context of RCTs with independent observations.

Keywords: binary outcome; log binomial regression; randomized controlled trial; relative risk; simulation (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.2202/1557-4679.1278 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:ijbist:v:7:y:2011:i:1:n:5

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/ijb/html

DOI: 10.2202/1557-4679.1278

Access Statistics for this article

The International Journal of Biostatistics is currently edited by Antoine Chambaz, Alan E. Hubbard and Mark J. van der Laan

More articles in The International Journal of Biostatistics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:ijbist:v:7:y:2011:i:1:n:5