Smoothness Selection for Penalized Quantile Regression Splines
Reiss Philip T. and
Huang Lei
Additional contact information
Reiss Philip T.: New York University and Nathan Kline Institute
Huang Lei: Johns Hopkins University
The International Journal of Biostatistics, 2012, vol. 8, issue 1, 27
Abstract:
Modern data-rich analyses may call for fitting a large number of nonparametric quantile regressions. For example, growth charts may be constructed for each of a collection of variables, to identify those for which individuals with a disorder tend to fall in the tails of their age-specific distribution; such variables might serve as developmental biomarkers. When such a large set of analyses are carried out by penalized spline smoothing, reliable automatic selection of the smoothing parameter is particularly important. We show that two popular methods for smoothness selection may tend to overfit when estimating extreme quantiles as a smooth function of a predictor such as age; and that improved results can be obtained by multifold cross-validation or by a novel likelihood approach. A simulation study, and an application to a functional magnetic resonance imaging data set, demonstrate the favorable performance of our methods.
Keywords: asymmetric Laplace distribution; functional connectivity; generalized approximate cross-validation; growth chart; nonparametric quantile regression; smoothing parameter (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1515/1557-4679.1381 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:ijbist:v:8:y:2012:i:1:n:10
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/ijb/html
DOI: 10.1515/1557-4679.1381
Access Statistics for this article
The International Journal of Biostatistics is currently edited by Antoine Chambaz, Alan E. Hubbard and Mark J. van der Laan
More articles in The International Journal of Biostatistics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().