The Large Sample Bounds on the Principal Strata Effect with Application to a Prostate Cancer Prevention Trial
Chiba Yasutaka
Additional contact information
Chiba Yasutaka: Kinki University School of Medicine
The International Journal of Biostatistics, 2012, vol. 8, issue 1, 1-19
Abstract:
Issues of post-randomization selection bias and truncation-by-death can arise in randomized clinical trials; for example, in a cancer prevention trial, an outcome such as cancer severity is undefined for individuals who do not develop cancer. Restricting analysis to a subpopulation selected after randomization can give rise to biased outcome comparisons. One approach to deal with such issues is to consider the principal strata effect (PSE, or equally, the survivor average causal effect). PSE is defined as the effect of treatment on the outcome among the subpopulation that would have been selected under either treatment arm. Unfortunately, the PSE cannot generally be estimated without the identifying assumptions; however, the bounds can be derived using a deterministic causal model. In this paper, we propose a number of assumptions for deriving the bounds with narrow width. The assumptions and bounds, which differ from those introduced by Zhang and Rubin (2003), are illustrated using data from a randomized prostate cancer prevention trial.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1515/1557-4679.1365 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:ijbist:v:8:y:2012:i:1:n:12
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/ijb/html
DOI: 10.1515/1557-4679.1365
Access Statistics for this article
The International Journal of Biostatistics is currently edited by Antoine Chambaz, Alan E. Hubbard and Mark J. van der Laan
More articles in The International Journal of Biostatistics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().