Targeted Maximum Likelihood Estimation for Dynamic Treatment Regimes in Sequentially Randomized Controlled Trials
Chaffee Paul H. and
J. van der Laan Mark
Additional contact information
Chaffee Paul H.: University of California, Berkeley
J. van der Laan Mark: University of California, Berkeley
The International Journal of Biostatistics, 2012, vol. 8, issue 1, 32
Abstract:
Sequential Randomized Controlled Trials (SRCTs) are rapidly becoming essential tools in the search for optimized treatment regimes in ongoing treatment settings. Analyzing data for multiple time-point treatments with a view toward optimal treatment regimes is of interest in many types of afflictions: HIV infection, Attention Deficit Hyperactivity Disorder in children, leukemia, prostate cancer, renal failure, and many others. Methods for analyzing data from SRCTs exist but they are either inefficient or suffer from the drawbacks of estimating equation methodology. We describe an estimation procedure, targeted maximum likelihood estimation (TMLE), which has been fully developed and implemented in point treatment settings, including time to event outcomes, binary outcomes and continuous outcomes. Here we develop and implement TMLE in the SRCT setting. As in the former settings, the TMLE procedure is targeted toward a pre-specified parameter of the distribution of the observed data, and thereby achieves important bias reduction in estimation of that parameter. As with the so-called Augmented Inverse Probability of Censoring Weight (A-IPCW) estimator, TMLE is double-robust and locally efficient. We report simulation results corresponding to two data-generating distributions from a longitudinal data structure.
Keywords: semi-parametric efficient estimation; targeted maximum likelihood estimation; estimation methods; sequential randomized controlled trials; dynamic treatment regimes (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/1557-4679.1406 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:ijbist:v:8:y:2012:i:1:n:14
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/ijb/html
DOI: 10.1515/1557-4679.1406
Access Statistics for this article
The International Journal of Biostatistics is currently edited by Antoine Chambaz, Alan E. Hubbard and Mark J. van der Laan
More articles in The International Journal of Biostatistics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().