EconPapers    
Economics at your fingertips  
 

Estimation in a Semi-Markov Transformation Model

Dabrowska Dorota M.
Additional contact information
Dabrowska Dorota M.: University of California

The International Journal of Biostatistics, 2012, vol. 8, issue 1, 62

Abstract: Semi-Markov and modulated renewal processes provide a large class of multi-state models which can be used for analysis of longitudinal failure time data. In biomedical applications, models of this kind are often used to describe evolution of a disease and assume that patient may move among a finite number of states representing different phases in the disease progression. Several authors proposed extensions of the proportional hazard model for regression analysis of these processes. In this paper, we consider a general class of censored semi-Markov and modulated renewal processes and propose use of transformation models for their analysis. Special cases include modulated renewal processes with interarrival times specified using transformation models, and semi-Markov processes with with one-step transition probabilities defined using copula-transformation models. We discuss estimation of finite and infinite dimensional parameters and develop an extension of the Gaussian multiplier method for setting confidence bands for transition probabilities and related parameters. A transplant outcome data set from the Center for International Blood and Marrow Transplant Research is used for illustrative purposes.

Keywords: modulated renewal process; transformation models; M-estimation; U-processes (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/1557-4679.1233 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:ijbist:v:8:y:2012:i:1:n:15

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/ijb/html

DOI: 10.1515/1557-4679.1233

Access Statistics for this article

The International Journal of Biostatistics is currently edited by Antoine Chambaz, Alan E. Hubbard and Mark J. van der Laan

More articles in The International Journal of Biostatistics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:ijbist:v:8:y:2012:i:1:n:15