Instruments and Bounds for Causal Effects under the Monotonic Selection Assumption
Taguri Masataka and
Chiba Yasutaka
Additional contact information
Taguri Masataka: Yokohama City University
Chiba Yasutaka: Kinki University School of Medicine
The International Journal of Biostatistics, 2012, vol. 8, issue 1, 23
Abstract:
Noncompliance with assigned treatment is an important problem of randomized clinical trials. In this situation, the structural mean model (SMM) approach focuses on the average treatment effect among patients actually treated (ATT). In contrast, the principal stratification (PS) approach addresses the effect on a certain subgroup defined by latent compliance behavior. While these approaches target different causal effects, the estimators have the same form as the classical instrumental variable estimator, under the assumption of no effect modification (NEM) and monotonic selection. In this article, we clarify the relation between SMM and PS under the monotonic selection assumption. Specifically, we translate the NEM assumption for the SMM estimator into the words of the PS approach. Then, we propose a new bound for the ATT by making a possibly more plausible assumption than the NEM assumption based on the PS approach. Furthermore, we extend these results to the average treatment effect for the entire population. The proposed bounds are illustrated with applications to a real clinical trial data. Although our assumption cannot be empirically verified, the proposed bounds can be considerably tighter than those previously proposed.
Keywords: bounds; causal inference; noncompliance; principal stratification; structural mean model (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1515/1557-4679.1386 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:ijbist:v:8:y:2012:i:1:n:24
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/ijb/html
DOI: 10.1515/1557-4679.1386
Access Statistics for this article
The International Journal of Biostatistics is currently edited by Antoine Chambaz, Alan E. Hubbard and Mark J. van der Laan
More articles in The International Journal of Biostatistics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().