Survival Curve Estimation with Dependent Left Truncated Data Using Cox's Model
Mackenzie Todd
Additional contact information
Mackenzie Todd: Dartmouth College
The International Journal of Biostatistics, 2012, vol. 8, issue 1, 20
Abstract:
The Kaplan-Meier and closely related Lynden-Bell estimators are used to provide nonparametric estimation of the distribution of a left-truncated random variable. These estimators assume that the left-truncation variable is independent of the time-to-event. This paper proposes a semiparametric method for estimating the marginal distribution of the time-to-event that does not require independence. It models the conditional distribution of the time-to-event given the truncation variable using Cox's model for left truncated data, and uses inverse probability weighting. We report the results of simulations and illustrate the method using a survival study.
Keywords: delayed entry; inverse probability weighting (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/1557-4679.1312 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:ijbist:v:8:y:2012:i:1:n:29
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/ijb/html
DOI: 10.1515/1557-4679.1312
Access Statistics for this article
The International Journal of Biostatistics is currently edited by Antoine Chambaz, Alan E. Hubbard and Mark J. van der Laan
More articles in The International Journal of Biostatistics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().