Hidden Value: Provenance as a Source for Economic and Social History
Rother Lynn (),
Mariani Fabio () and
Koss Max ()
Additional contact information
Rother Lynn: Institut für Philosophie und Kunstwissenschaft, Leuphana Universität Lüneburg, Universitätsallee 1, C5.411, D-21335 Lüneburg, Germany
Mariani Fabio: Institut für Philosophie und Kunstwissenschaft, Leuphana Universität Lüneburg, Universitätsallee 1, C5.418, D-21335 Lüneburg, Germany
Koss Max: Institut für Philosophie und Kunstwissenschaft, Leuphana Universität Lüneburg, Universitätsallee 1, C5.418, D-21335 Lüneburg, Germany
Jahrbuch für Wirtschaftsgeschichte / Economic History Yearbook, 2023, vol. 64, issue 1, 111-142
Abstract:
Building on the extensive production of provenance data recently, this article explains how we can expand the purview of computational analysis in humanistic and social sciences by exploring how digital methods can be applied to provenances. Provenances document chains of events of ownership and socio-economic custody changes of artworks. They promise statistical and comparative insights into social and economic trends and networks. Such analyses, however, necessitate the transformation of provenances from their textual form into structured data. This article first explores some of the analytical avenues aggregate provenance data can offer for transdisciplinary historical research. It then explains in detail the use of deep learning to address natural language processing tasks for transforming provenance text into structured data, such as Sentence Boundary Detection and Span Categorization. To illustrate the potential of this pioneering approach, this article ends with two examples of preliminary analysis of structured provenance data.
Keywords: art; art markets; artificial intelligence; deep learning; digital methods; gender; inheritance; museums; natural language processing; provenance; provenance data; value formation; wealth. Kunst; Kunstmärkte; Künstliche Intelligenz; Deep Learning; Digitale Methoden; Gender; Erbschaft; Museen; Natural Language Processing; Provenienz; Provenienzdaten; Wertbildung; Reichtum (search for similar items in EconPapers)
JEL-codes: N Z (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/jbwg-2023-0005 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:jbwige:v:64:y:2023:i:1:p:111-142:n:5
DOI: 10.1515/jbwg-2023-0005
Access Statistics for this article
Jahrbuch für Wirtschaftsgeschichte / Economic History Yearbook is currently edited by Dieter Ziegler
More articles in Jahrbuch für Wirtschaftsgeschichte / Economic History Yearbook from De Gruyter
Bibliographic data for series maintained by Peter Golla ().