Percentile and Percentile-t Bootstrap Confidence Intervals: A Practical Comparison
Christopher Elias
Journal of Econometric Methods, 2015, vol. 4, issue 1, 153-161
Abstract:
This paper employs a Monte Carlo study to compare the performance of equal-tailed bootstrap percentile-t, symmetric bootstrap percentile-t, bootstrap percentile, and standard asymptotic confidence intervals in two distinct heteroscedastic regression models. Bootstrap confidence intervals are constructed with both the XY and wild bootstrap algorithm. Theory implies that the percentile-t methods will outperform the other methods, where performance is based on the convergence rate of empirical coverage to the nominal level. Results are consistent across models, in that in the case of the XY bootstrap algorithm the symmetric percentile-t method outperforms the other methods, but in the case of the wild bootstrap algorithm the two percentile-t methods perform similarly and outperform the other methods. The implication is that practitioners that employ the XY algorithm should utilize the symmetric percentile-t interval, while those who opt for the wild algorithm should use either of the percentile-t methods.
Keywords: bootstrap; confidence interval; Monte Carlo (search for similar items in EconPapers)
JEL-codes: C01 C12 C15 C20 C23 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/jem-2013-0015 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:jecome:v:4:y:2015:i:1:p:9:n:7
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/jem/html
DOI: 10.1515/jem-2013-0015
Access Statistics for this article
Journal of Econometric Methods is currently edited by Tong Li and Zhongjun Qu
More articles in Journal of Econometric Methods from De Gruyter
Bibliographic data for series maintained by Peter Golla ().