Econometric Modelling of Time Series with Outlying Observations
David Hendry and
Grayham Mizon
Journal of Time Series Econometrics, 2011, vol. 3, issue 1, 26
Abstract:
Economies are buffeted by natural shocks, wars, policy changes, and other unanticipated events. Observed data can be subject to substantial revisions. Consequently, a "correct" theory can manifest serious mis-specification if just fitted to data ignoring its time-series characteristics. Modelling U.S. expenditure on food, the simplest theory implementation fails to describe the evidence. Embedding that theory in a general framework with dynamics, outliers and structural breaks and using impulse-indicator saturation, the selected model performs well, despite commencing with more variables than observations (see Doornik, 2009b), producing useful robust forecasts. Although this illustration involves a simple theory, the implications are generic and apply to sophisticated theories.
Keywords: econometric modelling; food expenditure; outliers; impulse-indicator saturation; robust forecasting; autometrics (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (37)
Downloads: (external link)
https://doi.org/10.2202/1941-1928.1100 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:jtsmet:v:3:y:2011:i:1:n:6
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/jtse/html
DOI: 10.2202/1941-1928.1100
Access Statistics for this article
Journal of Time Series Econometrics is currently edited by Javier Hidalgo
More articles in Journal of Time Series Econometrics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().