EconPapers    
Economics at your fingertips  
 

Monte-Carlo simulation of the chord length distribution function across convex bodies, non-convex bodies and random media

Mazzolo Alain and Roesslinger Benoît

Monte Carlo Methods and Applications, 2004, vol. 10, issue 3-4, 443-454

Abstract: The study of chord length distributions across various kinds of geometrical shapes, including stochastic mixtures, is a topic of great interest in many research fields ranging from ecology to neutronics. We have tried here to draw links between theoretical results and actual simulations for simple objects like disks, circular rings, spheres, hollow spheres, as well as for random media consisting of stochastic mono- or polydisperse spheres packing (three different packing algorithms were tested). The Monte Carlo simulations which were performed for simple objects fit perfectly theoretical formulas. For stochastic binary mixtures the simulations were still in rather good agreement with known analytical results.

Date: 2004
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/mcma.2004.10.3-4.443 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:mcmeap:v:10:y:2004:i:3-4:p:443-454:n:26

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/mcma/html

DOI: 10.1515/mcma.2004.10.3-4.443

Access Statistics for this article

Monte Carlo Methods and Applications is currently edited by Karl K. Sabelfeld

More articles in Monte Carlo Methods and Applications from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:mcmeap:v:10:y:2004:i:3-4:p:443-454:n:26