EconPapers    
Economics at your fingertips  
 

Fast GPU-based reuse of paths in radiosity

Castro Francesc, Patow Gustavo, Sbert Mateu and Halton John H. ()
Additional contact information
Castro Francesc: Institut d'Informàtica i Aplicacions. Universitat de Girona. Campus Montilivi. Edifici P4. 17071 Girona, Spain. Email:
Patow Gustavo: Institut d'Informàtica i Aplicacions. Universitat de Girona. Campus Montilivi. Edifici P4. 17071 Girona, Spain. Email: dagush@ima.udg.edu
Sbert Mateu: Institut d'Informàtica i Aplicacions. Universitat de Girona. Campus Montilivi. Edifici P4. 17071 Girona, Spain. Email: mateu@ima.udg.edu
Halton John H.: University of North Carolina at Chapel Hill, USA. Email: halton@cs.unc.edu

Monte Carlo Methods and Applications, 2007, vol. 13, issue 4, 253-273

Abstract: We present in this paper a GPU-based strategy that allows a fast reuse of paths in the context of shooting random walk applied to radiosity. Given an environment with diffuse surfaces, we aim at computing a basis of n radiosity solutions, corresponding to n light-source positions. Thanks to the reuse, paths originated at each of the positions are used to also distribute power from every other position. The visibility computations needed to make possible the reuse of paths are drastically accelerated using graphic hardware, resulting in a theoretical speed-up factor of n with regard to the computation of the independent solutions. Our contribution has application to the fields of interior design, animation, and videogames.

Keywords: Computer graphics; animation; global illumination; radiosity; random walks; graphic hardware (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/mcma.2007.014 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:mcmeap:v:13:y:2007:i:4:p:253-273:n:1

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/mcma/html

DOI: 10.1515/mcma.2007.014

Access Statistics for this article

Monte Carlo Methods and Applications is currently edited by Karl K. Sabelfeld

More articles in Monte Carlo Methods and Applications from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:mcmeap:v:13:y:2007:i:4:p:253-273:n:1